Adsorption and Self-Aggregation of Chiral [5]-Aza[6]helicenes on DNA Architecture: A Molecular Dynamics Study.
Giuseppina RaffainiPublished in: The journal of physical chemistry. B (2023)
Helicenes are an extremely interesting class of conjugated molecules without asymmetric carbon atoms but with intrinsic chirality. These molecules can interact with double-stranded chiral B-DNA architecture, modifying after their adsorption the hydrophilicity exposed by DNA to the biological environment. They also form ordered structures due to self-aggregation processes with possible different light emissions. Following initial studies based on molecular mechanics (MM) and molecular dynamics (MD) simulations regarding the adsorption and self-aggregation process of 5-aza[5]helicenes on double-stranded B-DNA, this theoretical work investigates the interaction between ( M )- and ( P )-5-aza[6]helicenes with double-helix DNA. Initially, the interaction of the pure single enantiomer with DNA is studied. Possible preferential absorption in minor or major grooves can occur. Afterward, the interaction of enantiopure compounds ( M )- and ( P )-5-aza[6]helicenes, potentially occurring in a racemic mixture at different concentrations, was investigated, taking into consideration both competitive adsorption on DNA and the possible helicenes' self-aggregation process. The structural selectivity of DNA binding and the role of helicene concentration in adsorption and the self-aggregation process are interesting. In addition, the ability to form ordered structures on DNA that follow its chiral architecture, thanks to favorable van der Waals intermolecular interactions, is curious.