Login / Signup

Photoluminescent gold nanoclusters as two-photon excited ratiometric pH sensor and photoactivated peroxidase.

Yuchi ChengHuangmei ZhouJinming XuYu ZhaoXihang ChenRodolphe AntoineMeng DingKun ZhangSan-Jun Zhang
Published in: Mikrochimica acta (2023)
A two-photon excited ratiometric fluorescent pH sensor is reported by combining L-cysteine-protected AuNCs (Cys@AuNCs) with fluorescein isothiocyanate (FITC). Cys@AuNCs were synthesized through a one-step self-reduction route and showed pH-responsive photoluminescence at 650 nm. Benefiting from the opposite pH response of Cys@AuNCs and FITC, the fluorescence ratio (F 515 nm /F 650 nm ) of FITC&Cys@AuNCs provided a large dynamic range of 200-fold for pH measurement in the response interval of pH 5.0-8.0. Based on the excellent two-photon absorption coefficient of Cys@AuNCs, the sensor was expected to achieve sensitive quantitation of pH in living cells under two-photon excitation. In addition, colorimetric biosensing based on enzyme-like metal nanoclusters has attracted wide attention due to their low-cost, simplicity, and practicality. It is crucial to develop high catalytic activity nanozyme from the viewpoint of practical application. The synthesized Cys@AuNCs exhibited excellent photoactivated peroxidase-like activity with high substrate affinity and catalytic reaction rate, promising for rapid colorimetric biosensing of field analysis and the control of catalytic reactions by photostimulation.
Keyphrases