Login / Signup

Symbiont-mediated fly survival is independent of defensive symbiont genotype in the Drosophila melanogaster-Spiroplasma-wasp interaction.

Jordan Elouise JonesGregory David Douglas Hurst
Published in: Journal of evolutionary biology (2020)
When a parasite attacks an insect, the outcome is commonly modulated by the presence of defensive heritable symbionts residing within the insect host. Previous studies noted markedly different strengths of Spiroplasma-mediated fly survival following attack by the same strain of wasp. One difference between the two studies was the strain of Spiroplasma used. We therefore performed a laboratory experiment to assess whether Spiroplasma-mediated protection depends upon the strain of Spiroplasma. We perform this analysis using the two strains of male-killing Spiroplasma used previously, and examined response to challenge by two strains of Leptopilina boulardi and two strains of Leptopilina heterotoma wasp. We found no evidence Spiroplasma strain affected fly survival following wasp attack. In contrast, analysis of the overall level of protection, including the fecundity of survivors of wasp attack, did indicate the two Spiroplasma strains tested varied in protective efficiency against three of the four wasp strains tested. These data highlight the sensitivity of symbiont-mediated protection phenotypes to laboratory conditions, and the importance of common garden comparison. Our results also indicate that Spiroplasma strains can vary in protective capacity in Drosophila, but these differences may exist in the relative performance of survivors of wasp attack, rather than in survival of attack per se.
Keyphrases
  • escherichia coli
  • drosophila melanogaster
  • young adults
  • magnetic resonance
  • machine learning
  • electronic health record
  • artificial intelligence