Login / Signup

Family History of Hypertension and Cobalt Exposure Synergistically Promote the Prevalence of Hypertension.

Cailiang ZhangQibing ZengYalan LiuZixiu QinLeilei LiuJunyan TaoLinyuan ZhangQianyuan YangJuan LeiXuejie TangQiaorong WangLiubo ZhengFeng Hong
Published in: Biological trace element research (2021)
It has been previously reported that family history of hypertension (FHH) and exposure to metals are each independent risk factor for hypertension, but the interaction between the two in relation to hypertension risk has been poorly studied. The object of this study is Dong ethnic group in Guizhou, China. The impacts of exposure to metals and FHH on hypertension incidence were examined by using the restrictive cubic spline (RCS) model as well as the multivariate logistic regression model. As a result, FHH, together with cobalt and lead exposure, was identified to show independent significant correlation with hypertension incidence (P < 0.05). The risk of hypertension increased with the increase in lead and cobalt exposure quartiles. Typically, the RCS model revealed such dose-response relation. To further confirm the association of cobalt, lead, and FHH with the risk of hypertension, multiplication and addition models were used to analyze the influence of the interactions between these variables on the risk of hypertension. The results showed that there was a multiplying interaction between the influence of the FHH and cobalt on the risk of hypertension. As for the additive interaction between cobalt and FHH, the relative excess risk due to interaction (RERI) was determined to be 0.596 (95% Cl: 0.001-1.191), the attributable proportion due to interaction (AP) was calculated as 0.256 (95% Cl: 0.075-0.437), whereas the synergy index (S) was identified to be 1.814 (95% Cl: 1.080-3.047). Our study provides some limited evidence that a FHH and cobalt exposure synergistically promote the prevalence of hypertension.
Keyphrases
  • blood pressure
  • risk factors
  • reduced graphene oxide
  • arterial hypertension
  • climate change
  • metal organic framework
  • data analysis