Login / Signup

Chemical synthesis of oligosaccharide derivatives with partial structure of β1-3/1-6 glucan, using monomeric units for the formation of β1-3 and β1-6 glucosidic linkages.

Tomoya OtaWataru SaburiShiro KombaHaruhide Mori
Published in: Bioscience, biotechnology, and biochemistry (2023)
β1-3/1-6 Glucans, known for their diverse structures, comprise a β1-3-linked main chain and β1-6-linked short branches. Laminarin, a β1-3/1-6 glucan extracted from brown seaweed, for instance, includes β1-6 linkages even in the main chain. The diverse structures provide various beneficial functions of the glucan. To investigate the relationship between structure and functionality, and to enable the characterization of β1-3/1-6 glucan-metabolizing enzymes, oligosaccharides containing exact structures of β1-3/1-6 glucans are required. We synthesized the monomeric units for the synthesis of β1-3/1-6 mixed-linked glucooligosaccharides. 2-(Trimethylsilyl)ethyl 2-O-benzoyl-4,6-O-benzylidene-β-d-glucopyranoside served as an acceptor in the formation of β1-3 linkages. Phenyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(tert-butyldiphenylsilyl)-1-thio-β-d-glucopyranoside and phenyl 2,3-di-O-benzoyl-4,6-di-O-levulinyl-1-thio-β-d-glucopyranoside acted as donors, synthesizing acceptors suitable for the formation of β1-3- and β1-6-linkages, respectively. These were used to synthesize a derivative of Glcβ1-6Glcβ1-3Glcβ1-3Glc, demonstrating that the proposed route can be applied to synthesize the main chain of β-glucan, with the inclusion of both β1-3 and β1-6 linkages.
Keyphrases
  • cell wall
  • high resolution
  • biofilm formation
  • solar cells
  • cystic fibrosis
  • staphylococcus aureus
  • density functional theory
  • quantum dots
  • kidney transplantation
  • mass spectrometry