COVID-19 therapy optimization by AI-driven biomechanical simulations.
E AgrimiA DikoD CarlottiA CiardielloM BorthakurS GiaguS MelchionnaCecilia VoenaPublished in: European physical journal plus (2023)
The COVID-19 disease causes pneumonia in many patients that in the most serious cases evolves into the Acute Distress Respiratory Syndrome (ARDS), requiring assisted ventilation and intensive care. In this context, identification of patients at high risk of developing ARDS is a key point for early clinical management, better clinical outcome and optimization in using the limited resources available in the intensive care units. We propose an AI-based prognostic system that makes predictions of oxygen exchange with arterial blood by using as input lung Computed Tomography (CT), the air flux in lungs obtained from biomechanical simulations and Arterial Blood Gas (ABG) analysis. We developed and investigated the feasibility of this system on a small clinical database of proven COVID-19 cases where the initial CT and various ABG reports were available for each patient. We studied the time evolution of the ABG parameters and found correlation with the morphological information extracted from CT scans and disease outcome. Promising results of a preliminary version of the prognostic algorithm are presented. The ability to predict the evolution of patients' respiratory efficiency would be of crucial importance for disease management.
Keyphrases
- computed tomography
- coronavirus disease
- sars cov
- end stage renal disease
- dual energy
- newly diagnosed
- ejection fraction
- contrast enhanced
- intensive care unit
- image quality
- chronic kidney disease
- positron emission tomography
- magnetic resonance imaging
- acute respiratory distress syndrome
- prognostic factors
- machine learning
- artificial intelligence
- healthcare
- emergency department
- liver failure
- case report
- patient reported outcomes
- molecular dynamics
- high resolution
- deep learning
- mass spectrometry
- health information
- respiratory syndrome coronavirus
- atomic force microscopy
- hepatitis b virus
- monte carlo
- bioinformatics analysis