Login / Signup

Computational predictions on Brønsted acidic ionic liquid-catalyzed carbon dioxide conversion to five-membered heterocyclic carbonyl derivatives.

Yusif AbdullayevNazani KarimovaLeonardo A SchenbergLucas Colucci DucatiJochen Autschbach
Published in: Physical chemistry chemical physics : PCCP (2023)
Experimentally conducted reactions between CO 2 and various substrates ( i.e. , ethylenediamine (EDA), ethanolamine (ETA), ethylene glycol (EG), mercaptoethanol (ME), and ethylene dithiol (EDT)) are considered in a computational study. The reactions were previously conducted under harsh conditions utilizing toxic metal catalysts. We computationally utilize Brønsted acidic ionic liquid (IL) [Et 2 NH 2 ]HSO 4 as a catalyst aiming to investigate and propose 'greener' pathways for future experimental studies. Computations show that EDA is the best to fixate CO 2 among the tested substrates: the nucleophilic EDA attack on CO 2 is calculated to have a very small energy barrier to overcome (TS1EDA, Δ G ‡ = 1.4 kcal mol -1 ) and form I1EDA (carbamic acid adduct). The formed intermediate is converted to cyclic urea (PEDA, imidazolidin-2-one) via ring closure and dehydration of the concerted transition state (TS2EDA, Δ G ‡ = 32.8 kcal mol -1 ). Solvation model analysis demonstrates that nonpolar solvents (hexane, THF) are better for fixing CO 2 with EDA. Attaching electron-donating and -withdrawing groups to EDA does not reduce the energy barriers. Modifying the IL via changing the anion part (HSO 4 - ) central S atom with 6 A and 5 A group elements (Se, P, and As) shows that a Se-based IL can be utilized for the same purpose. Molecular dynamics (MD) simulations reveal that the IL ion pairs can hold substrates and CO 2 molecules via noncovalent interactions to ease nucleophilic attack on CO 2 .
Keyphrases
  • ionic liquid
  • molecular dynamics
  • room temperature
  • carbon dioxide
  • density functional theory
  • gene expression
  • genome wide
  • gold nanoparticles
  • electron transfer