Login / Signup

Host Traits and Phylogeny Contribute to Shaping Coral-Bacterial Symbioses.

Francesco RicciKshitij TandonJay R BlackKim-Anh Lê CaoLinda L BlackallHeroen Verbruggen
Published in: mSystems (2022)
The success of tropical scleractinian corals depends on their ability to establish symbioses with microbial partners. Host phylogeny and traits are known to shape the coral microbiome, but to what extent they affect its composition remains unclear. Here, by using 12 coral species representing the complex and robust clades, we explored the influence of host phylogeny, skeletal architecture, and reproductive mode on the microbiome composition, and further investigated the structure of the tissue and skeleton bacterial communities. Our results show that host phylogeny and traits explained 14% of the tissue and 13% of the skeletal microbiome composition, providing evidence that these predictors contributed to shaping the holobiont in terms of presence and relative abundance of bacterial symbionts. Based on our data, we conclude that host phylogeny affects the presence of specific microbial lineages, reproductive mode predictably influences the microbiome composition, and skeletal architecture works like a filter that affects bacterial relative abundance. We show that the β-diversity of coral tissue and skeleton microbiomes differed, but we found that a large overlapping fraction of bacterial sequences were recovered from both anatomical compartments, supporting the hypothesis that the skeleton can function as a microbial reservoir. Additionally, our analysis of the microbiome structure shows that 99.6% of tissue and 99.7% of skeletal amplicon sequence variants (ASVs) were not consistently present in at least 30% of the samples, suggesting that the coral tissue and skeleton are dominated by rare bacteria. Together, these results provide novel insights into the processes driving coral-bacterial symbioses, along with an improved understanding of the scleractinian microbiome.
Keyphrases
  • microbial community
  • genome wide
  • gene expression
  • climate change
  • machine learning
  • human immunodeficiency virus
  • big data
  • electronic health record
  • atomic force microscopy