Login / Signup

Activatable molecular agents for cancer theranostics.

Jianjian ZhangLulu NingJiaguo HuangChi ZhangKanyi Pu
Published in: Chemical science (2019)
Theranostics that integrates diagnosis and treatment modalities has attracted great attention due to its abilities of personalized therapy and real-time monitoring of therapeutic outcome. Such a theranostic paradigm requires agents to simultaneously possess the capabilities of targeting, imaging, and treatment. Activatable molecular agents (AMAs) are promising for cancer theranostics, as they show a higher signal-to-noise ratio (SNR), real-time detection of cancer-associated biomarkers, lower normal tissue toxicity, and a higher therapeutic effect. This perspective summarizes the recent advancements of AMAs, which include imaging-guided chemotherapy, imaging-guided photodynamic therapy, and imaging-guided photothermal therapy. The molecular design principles, theranostic mechanisms, and biomedical applications of AMAs are described, followed by a discussion of potential challenges of AMAs in cancer theranostics.
Keyphrases
  • photodynamic therapy
  • fluorescence imaging
  • high resolution
  • papillary thyroid
  • squamous cell
  • squamous cell carcinoma
  • air pollution
  • lymph node metastasis
  • drug delivery
  • cancer therapy
  • quantum dots
  • label free