Enhancing Thermoelectric Performance of CuInTe 2 via Trace Ag Doping at Indium Sites.
Erkuo YangQuanwei JiangGuangshu LiZhen TianJianbo LiHuijun KangZongning ChenEnyu GuoJun WangTongmin WangPublished in: ACS applied materials & interfaces (2023)
Thermoelectric technology can be utilized to directly convert waste heat into electricity, aiming at energy harvesting in an environmentally friendly manner. As a promising p-type thermoelectric material, CuInTe 2 possesses a high inherent lattice thermal conductivity, which limits the practical implementation in the field of thermoelectricity. Herein, through the combination of vacuum melting and annealing along with hot-pressure sintering techniques, we demonstrated that CuIn 0.95 Ag 0.05 Te 2 thermoelectric materials with trace Ag doping can exhibit a notably high Seebeck coefficient of 614 μV/K, arising from the high density-of-states effective mass and reduced carrier concentration. Owing to the diminished lattice thermal conductivity derived from Umklapp scattering induced by point defects and dislocation, stemming from the trace Ag doping at In sites rather than Cu sites, CuIn 0.95 Ag 0.05 Te 2 exhibited a maximum figure of merit ( ZT ) of 1.38 at 823 K, an 18% enhancement over pristine CuInTe 2 , leading to a maximum average ZT of 0.67 across temperatures ranging from 303 to 823 K. In essence, our work underscores the efficacy of doping engineering and point defects in tailoring the thermoelectric performance of CuInTe 2 -based materials. This study not only contributes to advancing the fundamental understanding of thermoelectric enhancement but also lays out a practical pathway toward the realization of high-performance CuInTe 2 -based thermoelectric materials.