Login / Signup

Interface-Engineered Hollow Nanospheres with Titanium(IV) Binding Sites and Microwindows as Affinity Probes for Ultrafast and Enhanced Phosphopeptides Enrichment.

Xiaowei LiShujuan MaRuizhi TangJunjie Ou
Published in: Analytical chemistry (2022)
Enrichment and identification of phosphopeptides in real biological samples are of great significance in many aspects. Herein, Ti 4+ -immobilized silica hollow nanospheres were tailored via chelating with phosphonic acid groups produced from dealkylation of phosphonate ester functionalized silica hollow nanospheres, which were synthesized through a single micelle templated method with diethylphosphatoethyltriethoxysilane (DPTES) and tetramethoxysilane (TMOS) as silane precursors under neutral conditions. The characterization results of transmission electron microscopy (TEM), nitrogen sorption isotherms, FT-IR, and energy-dispersive X-ray (EDX) spectroscopy confirmed the successful preparation of Ti 4+ -immobilized silica hollow nanospheres (SHS-Ti; approximately 17 nm particle size), which possessed a 10 nm hollow cavity with 1.6 nm micropores on the thin shell (about 3.5 nm). Attributed to the immobilized Ti 4+ and high specific area (396 m 2 /g), SHS-Ti was applied as a Ti 4+ -immobilized metal affinity chromatography (Ti-IMAC) material and showed good specificity, a low limit of detection (5 fmol), high selectivity (tryptic digestion mixture of bovine serum albumin/β-casein, 1000:1 molar ratio), high binding capacity (120 mg/g for pyridoxal 5'-phosphate), and a high binding constant (1.30 × 10 3 L/mg). Particularly, benefiting from the unique hollow structure with microwindows on the thin shell, a short transport path, and small mass transfer resistance, SHS-Ti exhibited excellent enrichment speed in which both phosphopeptide loading and elution could be completed in 1 min. The 5298 unique phosphopeptides from 1618 unique phosphoproteins were identified after enrichment by SHS-Ti from 100 μg Jurkat cell lysates within three independent replicates. The results showed that SHS-Ti could be utilized as a novel and promising enrichment probe for phosphopeptide characterization in MS-based phosphoproteomics and related fields.
Keyphrases