Login / Signup

Glycopolymer Engineering of the Cell Surface Changes the Single Cell Migratory Direction and Inhibits the Collective Migration of Cancer Cells.

Lijuan ZhuRuyan FengGaojian ChenChao WangZhuang LiuZexin ZhangHong Chen
Published in: ACS applied materials & interfaces (2022)
Cancer cell migration is one of the most important processes in cancer metastasis. Metastasis is the major cause of death from most solid tumors; therefore, suppressing cancer cell migration is an important means of reducing cancer mortality. Cell surface engineering can alter the interactions between cells and their microenvironment, thereby offering an effective method of controlling the migration of the cells. This paper reports that modification of the mouse melanoma (B16) cancer cell surface with glycopolymers affects the migration of the cells. Changes in cell morphology, migratory trajectories, and velocity were investigated by time-lapse cell tracking. The data showed that the migration direction is altered and diffusion slows down for modified B16 cells compared to unmodified B16 cells. When modified and unmodified B16 cells were mixed, wound-healing experiments and particle image velocimetry (PIV) analysis showed that the collective migration of unmodified B16 cells was suppressed because of vortexlike motions induced by the modified cells. The work demonstrates the important role of surface properties/modification in cancer cell migration, thereby providing new insights relative to the treatment of cancer metastasis.
Keyphrases