Cone-beam CT (CBCT) is the most commonly used onboard imaging technique for target localization in radiation therapy. Conventional 3D CBCT acquires x-ray cone-beam projections at multiple angles around the patient to reconstruct 3D images of the patient in the treatment room. However, despite its wide usage, 3D CBCT is limited in imaging disease sites affected by respiratory motions or other dynamic changes within the body, as it lacks time-resolved information. To overcome this limitation, 4D-CBCT was developed to incorporate a time dimension in the imaging to account for the patient's motion during the acquisitions. For example, respiration-correlated 4D-CBCT divides the breathing cycles into different phase bins and reconstructs 3D images for each phase bin, ultimately generating a complete set of 4D images. 4D-CBCT is valuable for localizing tumors in the thoracic and abdominal regions where the localization accuracy is affected by respiratory motions. This is especially important for hypofractionated stereotactic body radiation therapy (SBRT), which delivers much higher fractional doses in fewer fractions than conventional fractionated treatments. Nonetheless, 4D-CBCT does face certain limitations, including long scanning times, high imaging doses, and compromised image quality due to the necessity of acquiring sufficient x-ray projections for each respiratory phase. In order to address these challenges, numerous methods have been developed to achieve fast, low-dose, and high-quality 4D-CBCT. This paper aims to review the technical developments surrounding 4D-CBCT comprehensively. It will explore conventional algorithms and recent deep learning-based approaches, delving into their capabilities and limitations. Additionally, the paper will discuss the potential clinical applications of 4D-CBCT and outline a future roadmap, highlighting areas for further research and development. Through this exploration, the readers will better understand 4D-CBCT's capabilities and potential to enhance radiation therapy.
Keyphrases
- image quality
- radiation therapy
- dual energy
- cone beam computed tomography
- computed tomography
- high resolution
- deep learning
- cone beam
- low dose
- case report
- magnetic resonance imaging
- machine learning
- healthcare
- convolutional neural network
- risk assessment
- locally advanced
- small cell lung cancer
- climate change
- social media
- high dose
- rectal cancer
- mass spectrometry
- spinal cord injury
- current status
- pet ct
- human health