Login / Signup

Air-stable n-type Fe-doped ZnO colloidal nanocrystals.

Enes BuzDongming ZhouKevin R Kittilstved
Published in: The Journal of chemical physics (2019)
The synthesis of Al and Fe codoped ZnO colloidal nanocrystals (NCs) using a modified etching-regrowth-doping method is presented. We show that the spectroscopic signatures associated with Fe3+ in ZnO disappear upon introduction of Al3+ donor defects into the ZnO lattice. The presence of Al3+ is confirmed by the appearance of a localized surface plasmon resonance feature indicating excess free carriers in the codoped NCs. These spectral changes suggest that Al3+ doping results in a reduction of Fe3+ dopants to the electron paramagnetic resonance-silent Fe2+ dopants that are stable under ambient conditions. These colloidal NCs provide a potential building block for manipulating magneto-optical properties and plasmon responses in colloidal NCs and higher-order nanostructures.
Keyphrases