Organic Small Molecule as the Underlayer Toward High Performance Planar Perovskite Solar Cells.
Shan CongHao YangYanhui LouLiang HanQinghua YiHaibo WangYinghui SunGui-Fu ZouPublished in: ACS applied materials & interfaces (2017)
The underlayer plays an important role for organic-inorganic hybrid perovskite formation and charge transport in perovskite solar cells (PSCs). Here, we employ a classical organic small molecule, 5,6,11,12-tetraphenyltetracene (rubrene), as the underlayer of perovskite films to achieve 15.83% of power conversion efficiency with remarkable moisture tolerance exposed to the atmosphere. Experiments demonstrate rubrene hydrophobic underlayer not only drives the crystalline grain growth of high quality perovskite, but also contributes to the moisture tolerance of PSCs. Moreover, the matching energy level of the desirable underlayer is conductive to extracting holes and blocking electrons at anode in PSCs. This introduction of organic small molecule into PSCs provides alternative materials for interface optimization, as well as platform for flexible and wearable solar cells.