Login / Signup

Supplementation with avian-derived polyclonal antibodies against Methanobrevibacter gottschalkii and M. ruminantium decreases ex vivo methane production and modifies ruminal fermentation in Angus crossbred steers.

Mariana E Garcia-AscolaniFederico TarnonskySergio RoskopfFederico PodversichGleise M SilvaTessa M SchulmeisterMartin Ruiz-MorenoTimothy J HackmannJose C B DubeuxNicolas DiLorenzo
Published in: Journal of animal science (2024)
The study aimed to investigate the effect of supplementing polyclonal antibodies (PAP) of avian origin against the ruminal methanogens Methanobrevibacter gottschalkii Ho (PAP-Ho) and M. ruminantium M1 (PAP-M1) on ruminal fermentation profile and methane production in Angus crossbred cattle (13 steers and 1 heifer). The experiment was conducted using a randomized block design with a 3 × 2 + 1 factorial arrangement, replicated in three periods. The factors included proportions of PAP against Ho and M1 in the mixture (100:0, 50:50, and 0:100 Ho:M1) and level of each mixture (3- or 6-mL per d). Cattle in control treatment did not receive PAP supplementation. Ruminal fluid was collected from the animals on d 0, 14 and 21 of treatment to determine of ruminal fermentation profile and ex vivo methane production. There was no effect of level of inclusion on ex vivo methane production. Supplementation with PAP-M1, either alone or in combination with PAP-Ho, decreased ex vivo methane output compared to the control group. Furthermore, in vivo molar proportion of propionate tended to be greater with PAP-M1, alone or combined with PAP-Ho, when compared with the control group. The study concluded that polyclonal antibodies against ruminal methanogens have the potential to decrease enteric methane emissions in cattle. The research provided important insights into the potential use of PAP as a strategy for reducing greenhouse gas emissions from cattle. Further research is needed to confirm these findings and to determine the practicality and feasibility of using PAP.
Keyphrases
  • anaerobic digestion
  • pi k akt
  • risk assessment
  • saccharomyces cerevisiae
  • human health
  • heavy metals
  • climate change
  • replacement therapy
  • combination therapy
  • sewage sludge