Login / Signup

Auxetic Carbon Honeycomb: Strain-Tunable Phase Transitions and Novel Negative Poisson's Ratio.

Yanchun LiShuaiwei WangBaocheng Yang
Published in: ACS omega (2021)
Auxetic structure and tunable phase transitions are fascinating properties for future application. Herein, we propose two three-dimensional (3D) carbon honeycombs (CHC), known as Cmcm -CHC and Cmmm-CHC. Based on first-principles calculations, these novel 3D materials exhibit auxeticity with a fascinating negative Poisson's ratio, which stems from (i) the puckered structure of Cmcm -CHC along the tube axis and (ii) significant change of angle-dominant deformation for Cmmm-CHC in the armchair direction. In addition, the moderate strain drives semimetal to semiconductor phase transition in CHCs, which thoroughly establishes its C-C bond formation. In the meantime, two new phases, namely P63/mmc-CHC and P6/mmm-CHC, form and exhibit semiconductor characteristics. Our results also show that Cmcm -CHC and P63/mmc-CHC are superhard materials. The outstanding negative Poisson's ratio and phase transition properties make CHCs highly versatile for innovative applications in microelectromechanical and nanoelectronic devices.
Keyphrases
  • density functional theory
  • quantum dots
  • energy transfer