Login / Signup

A Linear Superposition Model of Envelope and Frequency Following Responses May Help Identify Generators Based on Latency.

Tobias TeichertG Nike GnanatejaSrivatsun SadagopanBharath Chandrasekaran
Published in: Neurobiology of language (Cambridge, Mass.) (2022)
Envelope and frequency-following responses (FFR ENV and FFR TFS ) are scalp-recorded electrophysiological potentials that closely follow the periodicity of complex sounds such as speech. These signals have been established as important biomarkers in speech and learning disorders. However, despite important advances, it has remained challenging to map altered FFR ENV and FFR TFS to altered processing in specific brain regions. Here we explore the utility of a deconvolution approach based on the assumption that FFR ENV and FFR TFS reflect the linear superposition of responses that are triggered by the glottal pulse in each cycle of the fundamental frequency (F0 responses). We tested the deconvolution method by applying it to FFR ENV and FFR TFS of rhesus monkeys to human speech and click trains with time-varying pitch patterns. Our analyses show that F0 ENV responses could be measured with high signal-to-noise ratio and featured several spectro-temporally and topographically distinct components that likely reflect the activation of brainstem (<5 ms; 200-1000 Hz), midbrain (5-15 ms; 100-250 Hz), and cortex (15-35 ms; ~90 Hz). In contrast, F0 TFS responses contained only one spectro-temporal component that likely reflected activity in the midbrain. In summary, our results support the notion that the latency of F0 components map meaningfully onto successive processing stages. This opens the possibility that pathologically altered FFR ENV or FFR TFS may be linked to altered F0 ENV or F0 TFS and from there to specific processing stages and ultimately spatially targeted interventions.
Keyphrases