Login / Signup

Influence of salinity on physiological development and zinc toxicity in the marine medaka Oryzias melastigma.

Yoshifumi HorieChiho Takahashi
Published in: Ecotoxicology (London, England) (2021)
To determine whether the marine medaka Oryzias melastigma is a suitable model organism for evaluating the effects of environmental chemicals on marine teleosts, we examined the effect of salinity on physiological development and zinc toxicity. Growth as measured by total body length was significantly lower in fresh water compared to brackish water. Reproductive success was also significantly reduced in fresh water, although we observed cells in the pituitary producing gonadotropins such as Gpa (common glycoprotein hormone α), Fshb (follicle stimulating hormone β), and Lhb (luteinizing hormone β) at all salinities. These results indicate that O. melastigma is adaptable to various salinities from fresh to seawater, and brackish water is best for physiological processes including growth performance and reproduction. When zinc was dissolved in saltwater, a white precipitate formed immediately, and the dissolved concentration decreased in the supernatant and increased at precipitate. We performed zinc toxicity tests on early life stage and adult stage in fresh water, brackish water, and seawater. Among adults, the lowest observed effect concentration for mortality in freshwater (15.3 mg/L) was lower than in brackish water (>48 mg/L) or seawater (>48 mg/L). Similarly, among embryos and larvae, the lowest observed effect concentration for mortality in freshwater (4.8 mg/L) was lower than in brackish water (48 mg/L) or seawater (48 mg/L). These results highlight the importance of using marine organisms to evaluate the ecological effects of marine pollutants.
Keyphrases
  • early life
  • oxide nanoparticles
  • oxidative stress
  • type diabetes
  • microbial community
  • cardiovascular events
  • coronary artery disease
  • mass spectrometry
  • risk factors
  • molecularly imprinted
  • cell death
  • organic matter