Login / Signup

H2 Binding, Splitting, and Net Hydrogen Atom Transfer at a Paramagnetic Iron Complex.

Demyan E ProkopchukGeoffrey M ChambersEric D WalterMichael T MockR Morris Bullock
Published in: Journal of the American Chemical Society (2019)
While diamagnetic transition metal complexes that bind and split H2 have been extensively studied, paramagnetic complexes that exhibit this behavior remain rare. The square planar S = 1/2 FeI(P4N2)+ cation (FeI+) reversibly binds H2/D2 in solution, exhibiting an inverse equilibrium isotope effect of KH2/ KD2 = 0.58(4) at -5.0 °C. In the presence of excess H2, the dihydrogen complex FeI(H2)+ cleaves H2 at 25 °C in a net hydrogen atom transfer reaction, producing the dihydrogen-hydride trans-FeII(H)(H2)+. The proposed mechanism of H2 splitting involves both intra- and intermolecular steps, resulting in a mixed first- and second-order rate law with respect to initial [FeI+]. The key intermediate is a paramagnetic dihydride complex, trans-FeIII(H)2+, whose weak FeIII-H bond dissociation free energy (calculated BDFE = 44 kcal/mol) leads to bimetallic H-H homolysis, generating trans-FeII(H)(H2)+. Reaction kinetics, thermodynamics, electrochemistry, EPR spectroscopy, and DFT calculations support the proposed mechanism.
Keyphrases