Study on the Effect of Stretching on the Strength of Natural Silk Based on Different Feeding Methods.
Jianwei QuPiao FengQingyu ZhuYuying RenBing LiPublished in: ACS biomaterials science & engineering (2021)
Silk is an important biological protein fiber, which has been widely developed and used in textile and biomedical fields due to its excellent mechanical properties and good biocompatibility. Strength is an important indicator that determines the value and use of silk. Although investigations have been made on the mechanical properties of silkworm silks and their dependence relationship with the microstructures, the variation of silk strength formed in the process of silkworm spinning has not been reported. By feeding the same strain of silkworms with mulberry leaves, mulberry leaves + artificial feed, and artificial feed, silks with three filament sizes were obtained, respectively. The tensile test results showed that the strength and filament size of silk are inversely proportional. The structure and fibrosis process of different-strength silks were analyzed. The results showed that, compared with ordinary silk, the β-sheet and crystallinity content of high-strength silk is higher, indicating that its fibrosis process is more sufficient. We proposed that the stretched degree of silk protein determines its structure and properties. During the spinning process of individual silkworms, the secretion of silk protein is not stable, which will cause changes in the stretched degree. The measurement results of the intraindividual stretched degree and strength verified that the degree of stretch determines the strength of the silk. This study not only provides a deeper understanding of the properties of silk protein but also is of interest for the design and development of advanced biomimetic silk materials.