Login / Signup

"Green" PBX Formulations Based on High Explosives (RDX and HMX) and Water-Soluble pH-Sensitive Polymeric Binders.

Traian RotariuAndreea Elena MoldovanGabriela ToaderAurel DiaconEdina RusenRaluca-Elena GinghinăOvidiu IorgaHoria Răzvan BotișThomas Klapötke
Published in: Polymers (2023)
The increasingly harsher and more complex international and European environmental legislation drives the current development of "greener" energetics materials and munitions. The aerospace and defense industries rely on extensive research in the formulation and scale-up production of polymer-bonded explosives (PBX). In this context, this paper aims to present a versatile method for obtaining "green" PBX formulations based on two high explosives (hexogen (RDX) and octogen (HMX)) and acrylic acid-ethyl acrylate copolymeric binders. This study developed an innovative "eco-friendly" technology for coating the RDX and HMX crystals, allowing straightforward and safer manufacture of PBX, avoiding the use of traditional organic solvents. At the same time, these polymeric binders are soluble in water at a slightly alkaline pH and insoluble at acidic or neutral pH, thus ensuring a safer manipulation of the energetic materials during their entire life cycle and a facile recovery of the explosive in its original shape and morphology in demilitarization. The PBX formulations were characterized via specific analytical tools to evaluate the influence of their composition on the safety and performance characteristics: scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), alkaline pH solubility tests, differential thermal analysis (DTA), impact sensitivity test (BAM Fall Hammer Test), friction sensitivity test (BAM Friction Test), electrostatic sensitivity test (ESD), vacuum stability test, small scale shock reactivity test (SSRT), detonation velocity test. The "green" PBX formulations obtained through a simple and innovative coating method, based on the polymeric binders' adjustable water solubility, demonstrated remarkable energetic performances and a facile recovery of the explosive crystals by the dissolution of the polymeric binder at pH 11 and 30 °C.
Keyphrases
  • drug delivery
  • water soluble
  • cancer therapy
  • electron microscopy
  • high resolution
  • molecular dynamics simulations
  • ionic liquid
  • reduced graphene oxide
  • human health