Login / Signup

Janus Face All-cis 1,2,4,5-tetrakis(trifluoromethyl)- and All-cis 1,2,3,4,5,6-hexakis(trifluoromethyl)- Cyclohexanes.

Cihang YuAgnes KüttGerd-Volker RöschenthalerTomas LeblDavid Bradford CordesAlexandra M Z SlawinMichael BűhlDavid O'Hagan
Published in: Angewandte Chemie (International ed. in English) (2020)
We report the synthesis of all-cis 1,2,4,5-tetrakis (trifluoromethyl)- and all-cis 1,2,3,4,5,6-hexakis (trifluoromethyl)- cyclohexanes by direct hydrogenation of precursor tetrakis- or hexakis- (trifluoromethyl)benzenes. The resultant cyclohexanes have a stereochemistry such that all the CF3 groups are on the same face of the cyclohexyl ring. All-cis 1,2,3,4,5,6-hexakis(trifluoromethyl)cyclohexane is the most sterically demanding of the all-cis hexakis substituted cyclohexanes prepared to date, with a barrier (ΔG) to ring inversion calculated at 27 kcal mol-1 . The X-ray structure of all-cis 1,2,3,4,5,6-hexakis(trifluoromethyl)cyclohexane displays a flattened chair conformation and the electrostatic profile of this compound reveals a large diffuse negative density on the fluorine face and a focused positive density on the hydrogen face. The electropositive hydrogen face can co-ordinate chloride (K≈103 ) and to a lesser extent fluoride and iodide ions. Dehydrofluorination promoted decomposition occurs with fluoride ion acting as a base.
Keyphrases
  • drinking water
  • magnetic resonance
  • molecular dynamics simulations
  • dual energy