Login / Signup

The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity.

Iordan IordanovCsaba MihályiBalázs TóthLászló Csanády
Published in: eLife (2016)
Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca(2+)-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s(-1)), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies.
Keyphrases
  • cell death
  • oxidative stress
  • escherichia coli
  • stem cells
  • transcription factor
  • dna damage
  • cerebral ischemia
  • mesenchymal stem cells
  • human health
  • climate change
  • case control