Login / Signup

Fusion of GNSS Pseudoranges with UWB Ranges Based on Clustering and Weighted Least Squares.

Guenther RetscherDaniel KissJelena Gabela
Published in: Sensors (Basel, Switzerland) (2023)
Global navigation satellite systems (GNSSs) and ultra-wideband (UWB) ranging are two central research topics in the field of positioning and navigation. In this study, a GNSS/UWB fusion method is investigated in GNSS-challenged environments or for the transition between outdoor and indoor environments. UWB augments the GNSS positioning solution in these environments. GNSS stop-and-go measurements were carried out simultaneously to UWB range observations within the network of grid points used for testing. The influence of UWB range measurements on the GNSS solution is examined with three weighted least squares (WLS) approaches. The first WLS variant relies solely on the UWB range measurements. The second approach includes a measurement model that utilizes GNSS only. The third model fuses both approaches into a single multi-sensor model. As part of the raw data evaluation, static GNSS observations processed with precise ephemerides were used to define the ground truth. In order to extract the grid test points from the collected raw data in the measured network, clustering methods were applied. A self-developed clustering approach extending density-based spatial clustering of applications with noise (DBSCAN) was employed for this purpose. The results of the GNSS/UWB fusion approach show an improvement in positioning performance compared to the UWB-only approach, in the range of a few centimeters to the decimeter level when grid points were placed within the area enclosed by the UWB anchor points. However, grid points outside this area indicated a decrease in accuracy in the range of about 90 cm. The precision generally remained within 5 cm for points located within the anchor points.
Keyphrases
  • air pollution
  • single cell
  • magnetic resonance
  • rna seq
  • mass spectrometry
  • particulate matter
  • magnetic resonance imaging
  • electronic health record
  • contrast enhanced
  • machine learning
  • data analysis
  • drinking water