Effect of Structural Elements of Heparin-Mimicking Polymers on Vascular Cell Distribution and Functions: Chemically Homogeneous or Heterogeneous?
Jiao LeiWei SunDenghai ShengSujian WangXiaoli LiuTingting ZhaoHong ChenPublished in: ACS biomaterials science & engineering (2023)
Heparin-mimicking polymers (HMPs) are artificially synthesized alternatives to heparin with comparable regulatory effects on protein adsorption and cell behavior. By introducing two major structural elements of HMPs (sulfonate- and glyco-containing units) to different areas of material surfaces, heterogeneous surfaces patterned with different HMPs and homogeneous surfaces patterned with the same HMPs can be obtained. In this work, heterogeneous HMP-patterned poly(dimethylsiloxane) (PDMS) surfaces with sulfonate-containing polySS (pS) and glyco-containing polyMAG (pM) distributed in circular patterns (with a diameter of 300 μm) were prepared (S-M and M-S). Specifically, pS and pM were distributed inside and outside the circles on S-M, respectively, and exchanged their distribution on M-S. Homogeneous HMP-patterned silicone surfaces (SM-SM) where sulfonate- and glyco-containing poly(SS- co -MAG) (pSM) were distributed uniformly were prepared. Vascular cells showed interestingly different behaviors between chemically homogeneous and heterogeneous surfaces. They tended to grow in the sulfonate-modified area on S-M and M-S and were distributed uniformly on SM-SM. Compared with M-S, S-M showed a better promoting effect on the growth of vascular cells. Among all the samples, SM-SM exhibited the highest proliferation density and an optimum spreading state of vascular cells, as well as the highest human umbilical vein endothelial cell (HUVEC) viability (∼99%) and relatively low human umbilical vein smooth muscle cell (HUVSMC) viability (∼72%). By heterogeneous or homogeneous patterning with different structural elements of HMPs, the modified silicone surfaces spatially guided vascular cell distribution and functions. This strategy provides a new surface engineering approach to the study of cell-HMP interactions.