Operando Analysis of a Lithium/Sulfur Battery by Small-Angle Neutron Scattering.
Sebastian RisseEneli HärkBen KentMatthias BallauffPublished in: ACS nano (2019)
This study reports the use of operando small-angle neutron scattering to investigate processes in an operating Li/S battery. The combination with impedance spectroscopy yields valuable insights into the precipitation and dissolution of lithium sulfide during 10 cycles of galvanostatic cycling. The use of a deuterated electrolyte increases strongly the sensitivity to detect the sulfur and Li2S precipitates at the carbon host electrode and allows us to observe the time-dependent initial wetting of the system. No correlation of the scattering signal of the micropores with either lithium sulfide or sulfur is observable during the whole course of the experiment. Hence both reaction products do not precipitate inside the microporous structure but on the outer surface of the micrometer-sized carbon fibers used in this study. The excellent scattering contrast allows a detailed analysis of the formation and dissolution process of nanoscopic Li2S structures. While lithium sulfide particles grow homogeneously during the precipitation period, smaller Li2S particles dissolve first followed by a sudden dissolution of the larger Li2S particles.