Login / Signup

The Distribution of Fusarium graminearum and Fusarium asiaticum Causing Fusarium Head Blight of Wheat in Relation to Climate and Cropping System.

Fei XuWei LiuYuli SongYilin ZhouXiang-Ming XuGongqiang YangJunmei WangJiaojiao ZhangLulu Liu
Published in: Plant disease (2021)
In the main wheat production area of China (the Huang Huai Plain [HHP]), both Fusarium graminearum and Fusarium asiaticum, the causal agents of Fusarium head blight (FHB), are present. We investigated whether the relative prevalence of F. graminearum and F. asiaticum is related to cropping systems and/or climate factors. A total of 1,844 Fusarium isolates were obtained from 103 fields of two cropping systems: maize-wheat and rice-wheat rotations. To maximize the differences in climatic conditions, isolates were sampled from the north and south HHP regions. Based on the phylogenetic analysis of EF-1α and Tri101 sequences, 1,207 of the 1,844 isolates belonged to F. graminearum, and the remaining 637 isolates belonged to F. asiaticum. The former was predominant in the northern region: 1,022 of the 1,078 Fusarium isolates in the north were F. graminearum. The latter was predominant in the southern region: 581 of the 766 Fusarium isolates belonged to F. asiaticum. Using an analysis based on generalized linear modeling, the relative prevalence of the two species was associated more with climatic conditions than with the cropping system. F. graminearum was associated with drier conditions and cooler conditions during the winter but also with warmer conditions in the infection and grain-colonization period as well as with maize-wheat rotation. The opposite was true for F. asiaticum. Except for the 15-acetyldeoxynvalenol genotype, the trichothecene chemotype composition of F. asiaticum differed between the two cropping systems. The 3-acetyldeoxynivalenol genotype was more prevalent in the maize-wheat rotation, whereas the nivalenol genotype was more prevalent in the rice-wheat rotation. The results also suggested that environmental conditions in the overwintering period appeared to be more important than those in the infection, grain-colonization, and preanthesis sporulation periods in affecting the relative prevalence of F. graminearum and F. asiaticum. More research is needed to study the effect of overwintering conditions on subsequent epidemic in the following spring.
Keyphrases
  • genetic diversity
  • risk factors
  • climate change
  • high resolution