Login / Signup

A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries.

Junru WuXianshu WangQi LiuShuwei WangDong ZhouFeiyu KangShanmukaraj DevarajMichel ArmandTeofilo RojoBaohua LiGuoxiu Wang
Published in: Nature communications (2021)
The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising of a Li-rich oxide active material and graphite conductive agent to produce a high-energy "shuttle-relay" Li metal battery, where additional capacity is generated from the electrolyte's anion shuttling at high voltages. The gel polymer electrolyte, prepared via in situ polymerization in an all-fluorinated electrolyte, shows adequate ionic conductivity (around 2 mS cm-1 at 25 °C), oxidation stability (up to 5.5 V vs Li/Li+), compatibility with Li metal and safety aspects (i.e., non-flammability). The polymeric electrolyte allows for a reversible insertion of hexafluorophosphate anions into the conductive graphite (i.e., dual-ion mechanism) after the removal of Li ions from Li-rich oxide (i.e., rocking-chair mechanism).
Keyphrases
  • solid state
  • ion batteries
  • ionic liquid
  • mass spectrometry
  • drug delivery
  • nitric oxide
  • gold nanoparticles
  • wound healing
  • hyaluronic acid
  • tissue engineering