Computational study of solution behavior of magainin 2 monomers.
Peicho PetkovR MarinovaV KochevNevena IlievaElena LilkovaLeandar LitovPublished in: Journal of biomolecular structure & dynamics (2018)
Antimicrobial peptides (AMPs) play crucial role as mediators of the primary host defense against microbial invasion. They are considered a promising alternative to antibiotics for multidrug resistant bacterial strains. For complete understanding of the antimicrobial defense mechanism, a detailed knowledge of the dynamics of peptide-membrane interactions, including atomistic studies on AMPs geometry and both peptide and membrane structural changes during the whole process is a prerequisite. We aim at clarifying the conformation dynamics of small linear AMPs in solution as a first step of in silico protocol for establishing a correspondence between certain amino-acid sequence motifs, secondary-structure elements, conformational dynamics in solution and the intensity and mode of interaction with the bacterial membrane. To this end, we use molecular dynamics simulations augmented by well-tempered metadynamics to study the free-energy landscape of two AMPs with close primary structure and different antibacterial activity - the native magainin 2 (MG2) and an analog (MG2m, with substitutions F5Y and F16W) in aqueous solution. We observe that upon solvation, the initial α-helical structures change differently. The native form remains structured, with three shorter α-helical motifs, connected by random coils, while the synthetic analog tends predominantly to a disordered conformation. Our results indicate the importance of the side-chains at positions 5 and 16 for maintaining the solvated peptide conformation. They also provide a modeling background for recent experimental observations, relating the higher α-helical content in solution (peptide pre-folding) in the case of small linear AMPs to a lower antibacterial activity.