Login / Signup

Mechanism of action and side effects of colchicine based on biomechanical properties of cells.

Lanjiao LiuMingxin ChenYifan GaoLiguo TianWenxiao ZhangZuobin Wang
Published in: Journal of microscopy (2023)
Many diseases are related to changes in the biomechanical properties of cells; their study can provide a theoretical basis for drug screening and can explain the internal working of living cells. In this study, the biomechanical properties of nephrocytes (VERO cells), hepatocytes (HL-7702 cells), and hepatoma cells (SMCC-7721 cells) in culture were detected by atomic force microscopy (AFM) to analyze the side effects of colchicine at different concentrations (0.1 μg/mL (A) and 0.2 μg/mL (B)) at the nanoscale for 2, 4, and 6 h. Compared with the corresponding control cells, the damage to the treated cells increased in a dose-dependent manner. Among normal cells, the injury of nephrocytes (VERO cells) was markedly worse than that of hepatocytes (HL-7702 cells) in both colchicine solutions A and B. Based on the analyses of biomechanical properties, the colchicine solution reduced the rate of division and inhibited metastasis of SMCC-7721 cells. By comparing these two concentrations, we found that the anticancer effect of colchicine solution A was greater than that of solution B. Studying the mechanical properties of biological cells can help understand the mechanism of drug action at the molecular level and provide a theoretical basis for preventing the emergence and diagnosis of diseases at the nanoscale. This article is protected by copyright. All rights reserved.
Keyphrases