Vein network redundancy and mechanical resistance mitigate gas exchange losses under simulated herbivory in desert plants.
Miguel A DuarteSabrina WooKevin R HultineBenjamin Wong BlonderLuiza Maria Teophilo AparecidoPublished in: AoB PLANTS (2023)
Herbivory can impact gas exchange, but the causes of interspecific variation in response remain poorly understood. We aimed to determine (1) what effects does experimental herbivory damage to leaf midveins have on leaf gas exchange and, (2) whether changes in leaf gas exchange after damage was predicted by leaf mechanical or venation traits. We hypothesized that herbivory-driven impacts on leaf gas exchange would be mediated by (1a/1b) venation networks, either by more vein resistance, or possibly trading off with other structural defenses; (2a/2b) or more reticulation (resilience, providing more alternate flow pathways after damage) or less reticulation (sectoriality, preventing spread of reduced functionality after damage). We simulated herbivory by damaging the midveins of four leaves from each of nine Sonoran Desert species. We then measured the percent change in photosynthesis ( ΔAn% ), transpiration ( ΔEt% ) and stomatal conductance ( Δgsw% ) between treated and control leaves. We assessed the relationship of each with leaf venation traits and other mechanical traits. ΔAn% varied between +10 % and -55%, similar to ΔEt% (+27%, -54%) and Δgsw% (+36%, -53%). There was no tradeoff between venation and other structural defenses. Increased damage resilience (reduced ΔAn% , ΔEt% , Δgsw% ) was marginally associated with lower force-to-tear ( P < 0.05), and higher minor vein density ( P < 0.10) but not major vein density or reticulation. Leaf venation networks may thus partially mitigate the response of gas exchange to herbivory and other types of vein damage through either resistance or resilience.