Login / Signup

Strong Photothermoelectric Response and Contact Reactivity of the Dirac Semimetal ZrTe5.

François LeonardWenlong YuKimberlee C CollinsDouglas L MedlinJoshua D SugarA Alec TalinWei Pan
Published in: ACS applied materials & interfaces (2017)
The family of three-dimensional topological insulators opens new avenues to discover novel photophysics and to develop novel types of photodetectors. ZrTe5 has been shown to be a Dirac semimetal possessing unique topological, electronic, and optical properties. Here, we present spatially resolved photocurrent measurements on devices made of nanoplatelets of ZrTe5, demonstrating the photothermoelectric origin of the photoresponse. Because of the high electrical conductivity and good Seebeck coefficient, we obtain noise-equivalent powers as low as 42 pW/Hz1/2, at room temperature for visible light illumination, at zero bias. We also show that these devices suffer from significant ambient reactivity, such as the formation of a Te-rich surface region driven by Zr oxidation as well as severe reactions with the metal contacts. This reactivity results in significant stresses in the devices, leading to unusual geometries that are useful for gaining insight into the photocurrent mechanisms. Our results indicate that both the large photothermoelectric response and reactivity must be considered when designing or interpreting photocurrent measurements in these systems.
Keyphrases
  • room temperature
  • visible light
  • air pollution
  • particulate matter
  • ionic liquid
  • magnetic resonance imaging
  • early onset
  • magnetic resonance
  • pet ct