Use of smaller particle size of packing materials in liquid chromatography leads to faster separation and higher efficiency. This basic law has driven the evolution of packing materials for several generations. However, the use of nanoscale packing materials has been severely hampered by extremely high back pressure. Here, we report a new possibility of solving this issue via introducing novel nanomaterials with highly favorable structures. n-Octyl-modified monodispersed dendritic mesoporous silica nanospheres (DMSNs) with an unprecedentedly small diameter (ca. 170 nm) and appropriate pore size (5.6 nm) were controllably synthesized and demonstrated to be a practically applicable packing material offering ultrahigh efficiency. The center-radial centrosymmetric mesopore channels significantly improved the permeability of packed capillaries, enabling column packing and capillary electrochromatographic separation on regular instruments. Due to the unique morphology, very tiny particle size, and highly uniform packing, the packed column exhibited ultrahigh efficiency up to 3 500 000 plates/m. Powerful separation capability was demonstrated with glycan profiling of cancerous and normal cells, which revealed that cancerous cells exhibited characteristic N-glycans. Because DMSNs with tunable particle size and mesopores can be controllably prepared, DMSNs hold great potential to be a new record toward the ultimate generation of packing materials for ultraefficient liquid chromatographic separation.