Efficient Cadmium-Free Inverted Red Quantum Dot Light-Emitting Diodes.
Chae Young LeeNagarjuna Naik MudeRaju LampandeKwan Ju EunJi Eun YeomHyung Sik ChoiSang Hyun SohnJun Mo YooJang Hyuk KwonPublished in: ACS applied materials & interfaces (2019)
Here, we report an efficient inverted red indium phosphide (InP) comprising QD (InP/ZnSe/ZnS, core/shell structure) light-emitting diode (QLED) by modulating an interfacial contact between the electron transport layer and emissive InP-QDs and applying self-aging approach. The red InP-QLED with optimized interfacial contact exhibits a significant improvement in maximum external quantum efficiency and current efficiency from 4.42 to 10.2% and 4.70 to 10.8 cd/A, respectively, after 69 days of self-aging, which is an almost 2.3-fold improvement compared to the fresh device. The analysis indicates the consecutive reduction in electron injection and accumulation in the emissive QD due to changes in the conduction band minimum of ZnMgO (0.1 eV after 10 days of storage) through a downward vacuum-level shift according to the aging times. During the device aging periods, the oxygen vacancy of ZnMgO reduces, which leads to lower the conductivity of ZnMgO. As a result, charge balance of the device is improved with the suppression of exciton quenching at the interface of ZnMgO and InP-QD.