Login / Signup

Ultrafast Construction of Oxygen-Containing Scaffold over Graphite for Trapping Ni2+ into Single Atom Catalysts.

Zhibin LiuShaofeng LiJuan YangXinyi TanChang YuChangtai ZhaoXiaotong HanHuawei HuangGang WanYijin LiuKristina TschulikJieshan Qiu
Published in: ACS nano (2020)
Ultrafast construction of oxygen-containing scaffold over graphite for trapping Ni2+ into single atom catalysts (SACs) was developed and presented by a one-step electrochemical activation technique. The present method for Ni SACs starts with graphite foil and is capable of achieving ultrafast preparation (1.5 min) and mass production. The defective oxygen featuring the strong electronegativity enables primarily attracting Ni2+ ions and stabilizing Ni atoms via Ni-O6 coordination instead of conventional metal-C or metal-N. In addition, the oxygen defects for trapping are tunable through altering the applied voltage or electrolyte, further altering the loading of Ni atoms, indicative of enhanced oxygen evolution activity. This simple and ultrafast electrochemical synthesis is promising for the mass and controllable production of oxygen-coordinated Ni SACs, which exhibit good performance for oxygen evolution reaction.
Keyphrases
  • transition metal
  • metal organic framework
  • electron transfer
  • ionic liquid
  • energy transfer
  • highly efficient
  • quantum dots
  • label free