Login / Signup

Estimating CO2 Emission Savings from Ultrahigh Performance Concrete: A System Dynamics Approach.

Mubashar SheheryarRashid RehanMoncef L Nehdi
Published in: Materials (Basel, Switzerland) (2021)
Ordinary Portland cement concrete (OPC) is the world's most consumed commodity after water. However, the production of cement is a major contributor to global anthropogenic CO2 emissions. In recent years, ultrahigh performance concrete (UHPC) has emerged as a strong contender to replace OPC in diverse applications. UHPC has much higher mechanical strength, and thus less material is used in a structural member to resist the same load. Moreover, it has a much longer service life, reducing the long-term need for repair and replacement of aging civil infrastructure. Thus, UHPC can enhance the sustainability of cement and concrete. However, there is currently no robust tool to estimate the sustainability benefits of UHPC. This task is challenging considering that such benefits can only be captured over the long-term since variables, such as population growth and cement demand per capita, become more uncertain. In addition, the problem of CO2 emissions from cement and concrete is a complex system affected by time-dependent feedback. The System Dynamics (SD) method has specifically been developed for modeling such complex systems. Accordingly, a SD model was developed in this study to test various pertinent policy scenarios. It is shown that UHPC can reduce cumulative CO2 emissions of cement and concrete-over the studied simulation period-by more than 17%. If supplementary cementitious materials are further deployed in UHPC and new technologies permit reducing the carbon footprint per unit mass of cement, emission savings can become more substantial. The model offers a flexible framework where the user controls various inputs and can extend the model to account for new data, without the need for reconstruction of the entire model.
Keyphrases
  • healthcare
  • public health
  • mental health
  • life cycle
  • artificial intelligence
  • risk assessment
  • deep learning
  • data analysis
  • organic matter