Boronic Acid-Mediated Activity Control of Split 10-23 DNAzymes.
Mégane DebiaisAmandine LelievreJean-Jacques VasseurSabine MüllerMichael SmietanaPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
The 10-23 DNAzyme is an artificially developed Mg2+ -dependent catalytic oligonucleotide that can cleave an RNA substrate in a sequence-specific fashion. In this study, new split 10-23 DNAzymes made of two nonfunctional fragments, one of which carries a boronic acid group at its 5' end, while the other has a ribonucleotide at its 3' end, were designed. Herein it is demonstrated that the addition of Mg2+ ions leads to assembly of the fragments, which in turn induces the formation of a new boronate internucleoside linkage that restores the DNAzyme activity. A systematic evaluation identified the best-performing system. The results highlight key features for efficient control of DNAzyme activity through the formation of boronate linkages.