Login / Signup

Dosimetric Analysis of the Short-Ranged Particle Emitter 161Tb for Radionuclide Therapy of Metastatic Prostate Cancer.

Peter BernhardtJohanna SvenssonJens HemmingssonNicholas P van der MeulenJan Rijn ZeevaartMark W KonijnenbergCristina MüllerJon Kindblom
Published in: Cancers (2021)
The aim of this study was to analyze the required absorbed doses to detectable metastases (Dreq) when using radionuclides with prostate specific membrane antigen (PSMA)-targeting radioligands to achieve a high probability for metastatic control. The Monte Carlo based analysis was performed for the clinically-used radionuclides yttrium-90, iodine-131, lutetium-177, and actinium-225, and the newly-proposed low-energy electron emitter terbium-161. It was demonstrated that metastatic formation rate highly influenced the metastatic distribution. Lower values generated few large detectable metastases, as in the case with oligo metastases, while high values generated a distribution of multiple small detectable metastases, as observed in patients with diffused visualized metastases. With equal number of detectable metastases, the total metastatic volume burden was 4-6 times higher in the oligo metastatic scenario compared to the diffusely visualized scenario. The Dreq was around 30% higher for the situations with 20 detectable metastases compared to one detectable metastasis. The Dreq for iodine-131 and yttrium-90 was high (920-3300 Gy). The Dreq for lutetium-177 was between 560 and 780 Gy and considerably lower Dreq were obtained for actinium-225 and terbium-161, with 240-330 Gy and 210-280 Gy, respectively. In conclusion, the simulations demonstrated that terbium-161 has the potential for being a more effective targeted radionuclide therapy for metastases using PSMA ligands.
Keyphrases