Chemoselective Divergent Transformations of N -(Propargyl)indole-2-carbonitriles with Nitrogen Nucleophiles: Alkyne Hydroamination or Domino Cyclizations.
Rajesh R ZalteAlexey A FestaPavel V RaspertovOlga A StorozhenkoNikita E GolantsovVictor B RybakovAlexey V VarlamovLeonid G VoskressenskyPublished in: The Journal of organic chemistry (2022)
Interactions of N -(propargyl)indole-2-carbonitriles with nitrogen nucleophiles were studied. It was found that lithium hexamethyldisilazane (LiHMDS)-promoted reactions give mixtures of two product types, originating from an initial attack onto carbon-carbon or carbon-nitrogen triple bonds. Performing the reaction at reduced temperature and in the presence of catalytic amounts of LiHMDS delivered alkyne hydroamination products exclusively. On the contrary, the one-pot reaction of N -(propargyl)indole-2-carbonitriles with methanol and LiHMDS on heating, followed by the addition of a nitrogen nucleophile, allowed a selective domino cyclization sequence toward 1-aminopyrazino[1,2- a ]indoles. Anilines and nitrogen heterocycles could be employed as N -nucleophiles to obtain products of both types. Moreover, an alternative one-pot route toward a third product type has been developed. When N -(propargyl)indole-2-carbonitrile was first combined with aniline and LiHMDS at reduced temperature, further heating of the in situ generated hydroamination product led to the intramolecular cyclization into 1-imino-2-phenylpyrazino[1,2- a ]indoles. Thus, chemodivergent transformations of the same starting material into three compound classes were investigated. The possible reaction routes were studied, and N -(allenyl)indole-2-carbonitrile was identified as the key intermediate. Acyclic and cyclic products exhibit fluorescence emission in the blue to green range.
Keyphrases