Spark Plasma Sintering of Fine-Grained WC-Co Composites.
Joanna WachowiczTomasz DembiczakJoanna JasińskaZbigniew BałagaRobert KruzelNataša NáprstkováSylvia KuśmierczakPublished in: Materials (Basel, Switzerland) (2023)
Cemented carbides WC-Co are one of the basic tool materials. They constitute over half of the currently used tools intended for machining. The main advantages of WC-Co cemented carbides are high hardness and abrasion resistance. The properties of WC-Co sinters depend mainly on the content of the binding phase, the sintering method and the grain size of the powder from which the sinters were made. The aim of this study was to produce fine-grained WC-Co composites using SPS (spark plasma sintering) technology, as well as examine the effect of the applied technology on the basic properties of WC-Co sinters: microstructure, hardness, phase composition, compaction degree and tribological properties. In the processes carried out, no additives affecting the reduction in grain growth were used. Sintering was conducted at a temperature of 1200 °C with a holding time of 10 min. The process occurred under a load of 100 MPa. Finally, the samples were cooled in a vacuum of 10 -6 mbar. We measured the hardness using a Vickers hardness tester. We took hardness measurements along the diameter of the sintered samples. In order to ascertain the fracture toughness (KIC), we measured the radial crack length around the Vickers indentation and applied Shetty's formula. The tribological tests were carried out with a tribotester using the T-01 ball-on-disc method. The obtained data enabled the characterization of the wear process of the tested materials.