Login / Signup

A deep dense inception network for protein beta-turn prediction.

Chao FangYi ShangDong Xu
Published in: Proteins (2019)
Beta-turn prediction is useful in protein function studies and experimental design. Although recent approaches using machine-learning techniques such as support vector machine (SVM), neural networks, and K nearest neighbor have achieved good results for beta-turn prediction, there is still significant room for improvement. As previous predictors utilized features in a sliding window of 4-20 residues to capture interactions among sequentially neighboring residues, such feature engineering may result in incomplete or biased features and neglect interactions among long-range residues. Deep neural networks provide a new opportunity to address these issues. Here, we proposed a deep dense inception network (DeepDIN) for beta-turn prediction, which takes advantage of the state-of-the-art deep neural network design of dense networks and inception networks. A test on a recent BT6376 benchmark data set shows that DeepDIN outperformed the previous best tool BetaTPred3 significantly in both the overall prediction accuracy and the nine-type beta-turn classification accuracy. A tool, called MUFold-BetaTurn, was developed, which is the first beta-turn prediction tool utilizing deep neural networks. The tool can be downloaded at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldBetaTurn/download.html.
Keyphrases
  • neural network
  • fluorescent probe
  • living cells
  • sensitive detection
  • machine learning
  • deep learning
  • cystic fibrosis
  • electronic health record
  • protein protein
  • amino acid
  • artificial intelligence