Login / Signup

Linear Conjugated Polymers for Solar-Driven Hydrogen Peroxide Production: The Importance of Catalyst Stability.

Lunjie LiuMei-Yan GaoHaofan YangXiaoyan WangXiaobo LiAndrew I Cooper
Published in: Journal of the American Chemical Society (2021)
Hydrogen peroxide (H2O2) is one of the most important industrial oxidants. In principle, photocatalytic H2O2 synthesis from oxygen and H2O using sunlight could provide a cleaner alternative route to the current anthraquinone process. Recently, conjugated organic materials have been studied as photocatalysts for solar fuels synthesis because they offer synthetic tunability over a large chemical space. Here, we used high-throughput experiments to discover a linear conjugated polymer, poly(3-4-ethynylphenyl)ethynyl)pyridine (DE7), which exhibits efficient photocatalytic H2O2 production from H2O and O2 under visible light illumination for periods of up to 10 h or so. The apparent quantum yield was 8.7% at 420 nm. Mechanistic investigations showed that the H2O2 was produced via the photoinduced stepwise reduction of O2. At longer photolysis times, however, this catalyst decomposed, suggesting a need to focus the photostability of organic photocatalysts, as well as the initial catalytic production rates.
Keyphrases