Topological Sieving of Rings According to Their Rigidity.
Stefano IubiniEnzo OrlandiniDavide MichielettoMarco BaiesiPublished in: ACS macro letters (2018)
We present a novel mechanism for resolving the mechanical rigidity of nanoscopic circular polymers that flow in a complex environment. The emergence of a regime of negative differential mobility induced by topological interactions between the rings and the substrate is the key mechanism for selective sieving of circular polymers with distinct flexibilities. A simple model accurately describes the sieving process observed in molecular dynamics simulations and yields experimentally verifiable analytical predictions, which can be used as a reference guide for improving filtration procedures of circular filaments. The topological sieving mechanism we propose ought to be relevant also in probing the microscopic details of complex substrates.