Multicoating Nanoarchitectonics for Facile Preparation of Multi-Responsive Paper Actuators.
Wei WangYang ZhangYong-Lai ZhangJia-Rui ZhangXiang-Chao SunDong-Dong HanHong-Bo SunPublished in: ACS applied materials & interfaces (2022)
Stimuli-responsive actuators (SRAs) that can harvest environmental energies and convert them to mechanical works without additional energy-supplying systems have revealed great potential for robotic applications. However, at present, the practical usage of SRAs is significantly limited due to the problems with respect to solo responsiveness, simple deformation, and the difficulties for large-scale and cost-effective production. In this paper, multi-responsive paper actuators with multicoating nanoarchitectonics that enable complex deformation have been fabricated through a very simple painting process on common papers. The resultant paper actuator permits large-scale and low-cost production (A4 size: ∼0.5 dollar). The paper actuators that consist of a paper/graphite/polydimethylsiloxane sandwich structure can be actuated by multi-form stimuli, including moisture, temperature, light, and volatile organic compounds. More importantly, the bending deformation of the paper actuators can be further programmed by controlling the pencil drawing orientation, providing the feasibility of performing more complex deformations. Several multi-responsive paper actuators, including organic compound-responsive smart devices working in the liquid environment, moisture-enabled terrestrial crawling actuator, and a light-responsive attitude-control actuator integrated with an airplane model, have been demonstrated. The development of multi-responsive yet cost-effective paper actuators may hold great promise for a wide range of practical applications, for instance, soft micro-electromechanical systems, lab-on-a-chip systems, smart homes, and robotics.