Intergrowth Zeolites, Synthesis, Characterization, and Catalysis.
Yanhua WangChengzheng TongQingling LiuRui HanCaixia LiuPublished in: Chemical reviews (2023)
Microporous zeolites that can act as heterogeneous catalysts have continued to attract a great deal of academic and industrial interest, but current progress in their synthesis and application is restricted to single-phase zeolites, severely underestimating the potential of intergrowth frameworks. Compared with single-phase zeolites, intergrowth zeolites possess unique properties, such as different diffusion pathways and molecular confinement, or special crystalline pore environments for binding metal active sites. This review first focuses on the structural features and synthetic details of all the intergrowth zeolites, especially providing some insightful discussion of several potential frameworks. Subsequently, characterization methods for intergrowth zeolites are introduced, and highlighting fundamental features of these crystals. Then, the applications of intergrowth zeolites in several of the most active areas of catalysis are presented, including selective catalytic reduction of NOx by ammonia (NH 3 -SCR), methanol to olefins (MTO), petrochemicals and refining, fine chemicals production, and biomass conversion on Beta, and the relationship between structure and catalytic activity was profiled from the perspective of intergrowth grain boundary structure. Finally, the synthesis, characterization, and catalysis of intergrowth zeolites are summarized in a comprehensive discussion, and a brief outlook on the current challenges and future directions of intergrowth zeolites is indicated.