Limiting factors in the accuracy of DFT calculation for redox potentials.
Bun ChanPublished in: Journal of computational chemistry (2024)
In the present study, we have investigated factors affecting the accuracy of computational chemistry calculation of redox potentials, namely the gas-phase ionization energy (IE) and electron affinity (EA), and the continuum solvation effect. In general, double-hybrid density functional theory methods yield IEs and EAs that are on average within ~0.1 eV of our high-level W3X-L benchmark, with the best performing method being DSD-BLYP/ma-def2-QZVPP. For lower-cost methods, the average errors are ~0.2-0.3 eV, with ωB97X-3c being the most accurate (~0.15 eV). For the solvation component, essentially all methods have an average error of ~0.3 eV, which shows the limitation of the continuum solvation model. Curiously, the directly calculated redox potentials show errors of ~0.3 eV for all methods. These errors are notably smaller than what can be expected from error propagation with the two components (IE and EA, and solvation effect). Such a discrepancy can be attributed to the cancellation of errors, with the lowest-cost GFN2-xTB method benefiting the most, and the most accurate ωB97X-3c method benefiting the least. For organometallic species, the redox potentials show large deviations exceeding ~0.5 eV even for DSD-BLYP. The large errors are attributed to those for the gas-phase IEs and EAs, which represents a major barrier to the accurate calculation of redox potentials for such systems.