Type 3 cytokines IL-17A and IL-22 drive TGF-β-dependent liver fibrosis.
Thomas FabreManuel Flores MolinaGeneviève SoucyJean-Philippe GouletBernard WillemsJean-Pierre VilleneuveMarc BilodeauNaglaa H ShoukryPublished in: Science immunology (2019)
Inflammatory immune cells can modulate activation of hepatic stellate cells (HSCs) and progression of liver fibrosis. Type 3 inflammation characterized by production of interleukin-17A (IL-17) and IL-22 by innate and adaptive immune cells is implicated in many inflammatory conditions of the gut and can be counteracted by regulatory T cells (Tregs), but its contribution to liver fibrosis is still poorly understood. Here, we evaluated the contribution of type 3 inflammation in liver fibrosis using clinical liver biopsies, in vitro stimulation of primary HSCs, and in vivo mouse models. We report dysregulated type 3 responses in fibrotic lesions with increased IL-17+CD4+/FOXP3hiCD4+ ratio and increased IL-17 and IL-22 production in advanced liver fibrosis. Neutrophils and mast cells were the main sources of IL-17 in situ in humans. In addition, we demonstrate a new profibrotic function of IL-22 through enhancement of transforming growth factor-β signaling in HSCs in a p38 mitogen-activated protein kinase-dependent manner. In vivo, IL-22RA1 knockout mice exhibited reduced fibrosis in response to thioacetamide and carbon tetrachloride. Blocking either IL-22 or IL-17 production using aryl hydrocarbon receptor or RAR-related orphan receptor gamma-t antagonists resulted in reduced fibrosis. Together, these data have identified a pathogenic role for type 3 immune response mediated by IL-22 in driving liver fibrosis during chronic liver injury.