Login / Signup

Dipole Moment Propels π-Stacking of Heterodimers of Fluorophenylacetylenes.

Aniket KunduSaumik SenG Naresh Patwari
Published in: The journal of physical chemistry. A (2020)
Electronic and vibrational spectroscopic investigations in combination with quantum chemical calculations were carried out to probe the formation of four sets of heterodimers of phenylacetylene with 2-fluorohenylacetylene, 3-fluorophenylacetylene, 4-fluorophenylacetylene, and 2,6-difluorophenylacetylene. The interaction of phenylacetylene with fluorophenylacetylenes leads to marginal (2-9 cm-1) red-shifts in the acetylenic C-H stretching frequencies of fluorophenylacetylenes, which suggests that constituent monomers are minimally perturbed in the heterodimer. On the other hand, the density-functional-theory-based calculations indicate that π-stacked structures outweigh other structures incorporating C-H···π and C-H···F interactions by about 8 kJ mol-1 or more. The IR spectra in the acetylenic C-H stretching region were interpreted based on the perturbed dipole model, which suggests formation of predominantly antiparallel π-stacked structures, propelled by dipole moment. However, the energy decomposition analysis suggests that among stabilizing components dispersion dominates, while electrostatics plays a pivotal role in the formation of the π-stacked structures. Interestingly, the ability of 2-fluorophenylacetylene and 2,6-difluorophenylacetylene to π-stack differs significantly, even though both of them have almost identical dipole moments and the dipole moment propels the formation of π-stack structures. These results suggest π-stacking transcends the classical electrostatic description in terms of dipole moment.
Keyphrases
  • density functional theory
  • molecular dynamics
  • high resolution
  • molecular dynamics simulations
  • molecular docking
  • monte carlo
  • african american
  • energy transfer
  • fluorescent probe