Login / Signup

Effects of Transcranial Direct Current Stimulation over the Supplementary Motor Area Combined with Walking on the Intramuscular Coherence of the Tibialis Anterior in a Subacute Post-Stroke Patient: A Single-Case Study.

Naruhito HasuiNaomichi MizutaJunji TaguchiTomoki NakataniShu Morioka
Published in: Brain sciences (2022)
Motor recovery is related to the corticospinal tract (CST) lesion in post-stroke patients. The CST originating from the supplementary motor area (SMA) affects the recovery of impaired motor function. We confirmed the effects of transcranial direct current stimulation (tDCS) over the SMA combined with walk training on CST excitability. This study involved a stroke patient with severe sensorimotor deficits and a retrospective AB design. Walk training was conducted only in phase A. Phase B consisted of anodal tDCS (1.5 mA) combined with walk training. Walking speed, stride time variability (STV; reflecting gait stability), and beta-band intramuscular coherence-derived from the paired tibialis anterior on the paretic side (reflecting CST excitability)-were measured. STV quantified the coefficient of variation in stride time using accelerometers. Intramuscular coherence during the early stance phase noticeably increased in phase B compared with phase A. Intramuscular coherence in both the stance and swing phases was reduced at follow-up. Walking speed showed no change, while STV was noticeably decreased in phase B compared with phase A. These results suggest that tDCS over the SMA during walking improves gait stability by enhancing CST excitability in the early stance phase.
Keyphrases
  • transcranial direct current stimulation
  • working memory
  • magnetic resonance imaging
  • lower limb
  • magnetic resonance
  • brain injury
  • diffusion weighted imaging